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In this paper we present two multigrid numerical schemes over unstructured trian-
gular meshes that solve the slider air bearing problem of hard disk drives. For each
fixed slider attitude, the air bearing pressure is obtained by solving the generalized
Reynolds equation. The convection part of the equation is modeled in one scheme
by the PSI multidimensional upwind residual distribution approach and in the other
scheme by the SUPG finite element approach cast in residual distribution form. In
both schemes, a linear Galerkin method is used to discretize the diffusion terms. In
addition, a non-nested multigrid iteration technique is used to speed up the conver-
gence rate. Finally, the balanced steady state flying attitude of the slider subject to
pre-applied suspension force and torques is obtained by a Quasi–Newton iteration
method (Broyden’s method), and the results of the numerical solutions are compared
to each other and to experimental data.c© 2001 Academic Press

Key Words:air bearing; finite elements; hard disk drive; mesh generation and
refinement; rarefied gas flows; residual distribution scheme; unstructured meshes.

1. INTRODUCTION

In today’s hard disk drive (Fig. 1), the read–write element is attached to the trailing edge of
an air bearing slider (Figs. 2–4). This slider glides over the rotating disk with a separation
(flying height) determined by the balance between the air bearing force and moments
generated by the extremely thin squeezed air layer under the slider and the opposing force
and moments exerted by a pre-load of the suspension, which links the slider and the actuator
(Fig. 2). The slider has three degrees of freedom. It can move up and down and rotate around
the point where the suspension is attached (Fig. 2) in the pitch and roll directions; the skew
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FIG. 1. The IBM Travelstar 25GB hard disk drive.

angle at each radial position is generally fixed. The distance between the read–write element
and the disk surface where magnetic information is stored has significant influence on the
read back signal. Fluctuation of the distance will cause noise in the read back signal. The
suspension force and moments can be taken as constant values, but the air bearing force
and moments have to be calculated from the generalized Reynolds equation obtained from
the Boltzmann equation. To increase the storage density and reduce the signal noise, it is
desirable to achieve a low and uniform steady state flying height across the disk. The design
goal of the next generation hard disk drive is to reach an areal density of 100 Gbit/in2, which
requires a flying height between 5 and 10 nm. In the hard disk drive industry, the above flying
attitude goal is obtained by carefully designing the air bearing surface of the slider, which
generally has a very complicated shape. Figures 3 and 4 show one typical design. To reduce
the design cost, accurate and efficient steady state air bearing design software is required.

In the slider’s manufacturing process, the etching technique leaves a steep narrow wall
profile region (a few microns wide and a few microns in recess depth from the air bearing
surface for sliders with millimeter length scale) along the rail boundaries (Fig. 4). The

FIG. 2. A sketch of the hard disk drive assembly.
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FIG. 3. The next generation NSIC (National Storage Industry Consortium) slider air bearing surface design
with the left-hand side as the leading edge and the slider flying upside down with the suspension attached on its
back. All scales have been normlized by the width (1 mm). Different color depth of the air bearing surface rails
represents different recess depth from the top (air bearing surface).

dimensions and shape of the wall profiles have a profound influence on the flying attitude. As
a result, it is important to accurately capture these regions of rapidly changing elevations in
the numerical model. In addition, the air bearing pressure field is characterized by irregularly
distributed regions with very high pressure gradient. To get accurate results, it is necessary
to have fine enough grids to cover the above regions. Under these situations, unstructured
grids prove to be an economical and convenient way of decomposing the computational
domain.

In this paper we present two numerical schemes to solve the generalized Reynolds equa-
tion based on the unstructured triangular meshes generated by the Delaunay techniques

FIG. 4. The 3-D geometry of the NSIC slider. The horizontal scales have been normalized by the width
(1 mm).
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presented in our previous papers [1, 2]. The convection part of the generalized Reynolds
equation is discretized by two different schemes—the positive streamwise invariant (PSI)
residual distribution approach in [3, 4] and the streamline upwind Petrov-Galerkin (SUPG)
finite element scheme [5] cast as a residual distribution formula [6]—while a standard linear
Galerkin type method [7] is used to model the diffusion part of the equation. A non-nested
multigrid technique based on the full storage approximation multi-grid strategy of Brandt
[8] is implemented to improve the convergence rate of the Gauss–Seidel smoother used to
solve the nonlinear discretized equation. Mavriplis and Jameson’s restriction and interpo-
lation functions [9] that suit non-nested triangular meshes are used to transfer the variables
and residues between the meshes.

Finally, the balanced steady state flying height of the slider is found by a Quasi–Newton
iteration method (Broyden’s method) described in Dennis and Schnabel [10].

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

In air bearing simulation the generalized Reynolds equation is solved to get the pressure
field. Because of the extremely narrow spacing between the slider and the disk (on the order
of 10 nm, which is only a fraction of the mean free path of the gas molecules, about 65 nm
under normal operating conditions), the gas in the spacing is extremely rarefied and the gas
molecules at a solid surface no longer experience the same velocity as the surface, i.e., there
is slipping. The usual continuum and nonslip condition assumptions no longer adequately
describe the actual physics. Until now, the modified versions of the Reynolds equation that
take the rarefaction and slipping effect into account give the most agreeable results with
those of experiments and direct Monte Carlo simulation [11–15]. The different versions of
the Reynolds equation can be written in a unified dimensionless form as

σ
∂

∂T
(PH) = ∂

∂X

(
QPH3∂P

∂X
−3xPH

)
+ ∂

∂Y

(
QPH3∂P

∂Y
−3y P H

)
, (1)

whereP, H , andT are the dimensionless pressure, distance between air bearing surface
and disk surface and time, normalized bypa, hm and 1/$ , respectively;pa is the ambient
pressure,hm is the flying height of a reference point on the slider (usually taken to be the
point at the trailing edge center of the slider assumed to have zero recess),ω is the constant
angular velocity of the disk. The expressionσ = 12µωL2/Pah2

m is the squeeze number,
which represents the relative importance between the unsteady effect and the diffusion effect.
The expressions3x = 6µU L/pah2

m and3y = 6µV L/pah2
m are the bearing numbers in

thex- andy-directions, respectively, which represent the relative importance between the
convection effect and the diffusion effect. The termµ is the dynamic viscosity of the gas,
U andV are the disk velocity components in thex- and y-direction, and L is the length
scale of the slider (taken here to be the width of the slider). The term Q is the flow factor,
which marks the difference between different rarefaction and slip models of the equation.
Different Q for different models can be found in Burgdorfer [11], Hsia and Domoto [12],
and Fukui and Kaneko [13]. In our simulation, the Fukui–Kaneko model is used, which
is the best model available when the air bearing clearance is below 100 NM [15]. In the
implementation of the model, the database in [13] is used to find the flow factor. Along the
outside boundary of the slider, the pressure is simply taken as the ambient pressure.
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3. MESH GENERATION

Because of its geometric flexibility in constructing quality meshes around complex con-
figurations and the relative convenience of incorporating an adaptive methodology, and
also its efficiency and its ability to generate optimal connections to existing nodal points,
a Delaunay method as described in [16] is used as a building block in our approach for
the incremental mesh refinement and adaptation. Using different refinement techniques, we
generate three sets of unstructured triangular meshes. For the coarsest meshes, it’s important
that the boundaries of the rails be represented in the triangulation, because the boundaries
are the places with dramatic recess depth change. The conforming Delaunay refinement
technique in Ruppert [17] is used to generate the coarsest conformed background meshes.
The longest-side bisection Delaunay refinement technique in Rivara and Inostroza [18] is
adopted to cluster fine meshes in the recess wall regions with rapid geometric change based
on geometric considerations (the maximum recess depth difference in each triangle must
be smaller than a prescribed value in order to model the rapid elevation change accurately),
which forms the second finer meshes. For the final mesh adaptation, the maximum undi-
vided pressure difference in a triangle is used to decide whether the triangle needs further
refinement. The same longest-side bisection Delaunay refinement technique is used to refine
the meshes. Details can be found in our previous papers [1, 2].

4. THE DISCRETIZATION OF THE CONVECTION EQUATION

Ignoring the diffusion terms in Eq. (1) for the moment and dividing the remaining terms
by σ , we get the convection equation

∂

∂T
(PH)+ d

dx

(
3x

σ
PH

)
+ d

dy

(
3y

σ
PH

)
= 0. (2)

In the residual distribution schemes in [3, 4], the residual in triangle T is defined as

φT = −
∫ ∫

T

∂(PH)

∂T
d A=

∫ ∫
T

(
3x

σ
,
3y

σ

)
· ∇(PH) d A

= AT λ̄T · ∇(PH) =
3∑

j=1

kT
j (PH) j , (3)

whereAT is the area of the triangle and̄λT = (3x,3y)/σ is the averaged wave speed in
each triangle. The conservation constraint gives

λ̄T = 1

ATσ

∫ ∫
T

(
3x,3y

)
d A= 1

3σ
[(3x,3y)1+ (3x,3y)2+ (3x,3y)3]. (4)

In the above formulation, the bearing number is assumed to vary linearly in each triangle.
The inflow parameterkT

j is defined as

2kT
j = λ̄T · n̄ j , (5)

wheren̄ j is the inward normal of each edge of the triangle with a magnitude equal to its
length (see Fig. 5). In the air bearing problem,kT

j only needs to be calculated once and
stored for later use.
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FIG. 5. The inward normals of a triangle.

The residual of each triangle is distributed to its nodes by the distribution coefficientβT
i

φT
i = βT

i φ
T . (6)

The convection equation can be discretized as

AÄ
1T

[
(PH)n+1

i − (PH)ni
] = − M∑

T=1

φT
i = −

M∑
T=1

βT
i φ

T = −
M∑

T=1

βT
i

3∑
j=1

kT
j (PH)n+1

j , (7)

whereAÄ is the area of the median dual andM is the number of triangles withi as one
node. In the above formulation, the solution is updated by accumulating the residuals at node
i , triangle by triangle. To put the schemes in a form that is convenient for the following
multigrid iterations, we reformulated it such that the solution can be updated edge by
edge

AÄ
1T
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i

3∑
j=1

kT
j (PH)n+1

j

= −
M∑

j=1

[(
β

T1
i kT1

i + βT2
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i

)
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i

+ (βT1
i kT1

j + βT2
i kT2

j

)
(PH)n+1

j

]
, (8)

whereT1 andT2 are the two neigboring triangles sharing the edgeij .
For the PSI scheme [3, 4], the distribution coefficient can be written as

βT
i =

max
(
0, kT

i

)
min(0, ((PH)i − (PH)in)φT )∑3

j=1 max
(
0, kT

j

)
min(0, ((PH) j − (PH)in)φT )

, (9)

where (PH)in is the linearly interpolatedPH value at the inflow point, which can be
evaluated as

(PH)in =
∑3

j=1 min
(
0, kT

j

)
(PH) j∑3

j=1 min
(
0, kT

j

) . (10)
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For the SUPG finite element scheme [5] in residual distribution form [6], the distribution
coefficient can be written as

βT
i =

1

3
+ 0.5

h

|λ̄T |AT
kT

i , (11)

in which the length scaleh can be approximated as

h = 3
max
i=1

(|(ni )x|, |(ni )y|). (12)

5. THE FINITE-ELEMENT DISCRETIZATION OF THE DIFFUSION TERMS

The diffusion terms are discretized using a Galerkin weighted integral [7]

∫ ∫
AÄ

[
∇ ·
(

QPH3∂P

∂x
,QPH3∂P

∂y

)]
d A

σ
=

M∑
j=1

Wi j
[
(P)n+1

j − (P)n+1
i

]
. (13)

Here the weightsWi j are defined as

2σWi j = QPH3
L

cot an(αL j )+QPH3
R

cotan(αRj), (14)

whereQPH3
L

andQPH3
R

are the average values ofQPH3 in the triangle to the left or right
of the edgeij. The termsαL j andαRj are the opposite angles to the edgeij as shown in
Fig. 6.

FIG. 6. The median dual control volume.
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6. ITERATIVE SOLVER OF THE DISCRETIZED EQUATIONS

All of the above numerical schemes can be written in a unified form as

Ci Pn+1
i +

M∑
j=1

Ci j Pn+1
j = Si

(
Pn

i , Pn
j

)
, (15)

where
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j + βT2
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j

)
Hj −Wi j , (17)

Si
(
Pn

i , Pn
j

) = AÄ
1T

(P H)ni . (18)

Equation (15) is still nonlinear, becauseCi andCi j depend onPn+1. One simple way
to linearize the equation is to takeP as the most recent known value of the last iteration.
This is the so-called lagging technique. The resulting simultaneous equations are solved by
a two sweep point Gauss–Seidel method. The first sweep starts from the beginning of the
vertex list, and the second sweep starts from the end of the list. This takes into account the
fact that the diffision terms in the Reynolds equation are elliptic in nature, and disturbance
information is spread simultaneously in all directions.

The solution for one fixed slider attitude is found by marching in time. For problems with
fixed attitude, the unsteady term is not needed as part of the solution, but it is kept here to
serve as an underrelaxation term. When a relatively large time step is used, the unsteady
term can be ignored, and the technique is more like a direct iteration than time marching.
The implicit schemes are unconditionally stable, so an arbitrarily large CFL number such
as 1.0E12 can be used.

7. GRID TRANSFER OPERATORS FOR THE MULTIGRID ALGORITHM

In the implementation of the multigrid algorithm, the variables, residues, and corrections
are transferred frequently between different mesh levels. The transfer procedure has vital in-
fluence on the overall performance of the multigrid algorithm. Mavripilis and Jameson’s [9]
grid transfer operators are proven to be well suited for multigrid algorithms over non-nested
unstructured triangular meshes. Here we simply adopt their operators.

When the restriction operator is applied to the variables, the operation can be taken as a
linear interpolation of the variables from the fine mesh nodes to the coarser mesh nodes. If
it operates on the residue, then the residue at the vertex of finer meshes can be distributed to
the three vertices of the coaser triangle that encloses the vertex by its three area coordinates.
This guarantees the conservation of the residual in the transfer process.

The interpolation operator is used to transfer corrections from the coarser meshes to the
finer meshes. It can simply be taken as a linear interpolation.
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8. FAS MULTIGRID ALGORITHM

The full approximation storage (FAS) algorithm in Brandt [8] is well suited for nonlinear
equations. It solves the equations by iterating over several sets of meshes. In our actual
implementation, three levels of meshes are used. Figure 7 shows the multigrid V cycles
used in the simulation. The number in each circle represents the number of iterations done
on that mesh level. At the beginning of each iteration, the coefficents of the equation are
updated once and stored using the solution of the previous time step, and the resulting linear
algebraic equations are solved by a fixed number of two sweep Gauss–Seidel iterations. In
our code, about 10 to 20 Gauss–Seidel iterations are used to find an approximate solution.
To get a good initial guess we first perform 40 iterations on the coarsest meshes, then we
linearly interpolate the solution variables to the second-level meshes. Twenty iterations
are carried out there before we interpolate the solution variables to the third-level meshes
where the standard V circle begins. NV cycles are carried out over the initial three sets
of meshes to reduce the error to a certain level before we adaptively refine the third-level
meshes according to the pressure distribution. The following V cycles are performed over
the new finest meshes and the other two meshes until convergence is achieved. The number
of iterations on each mesh level shown in the circle of Fig. 7 corresponds to the optimized
convergence speed for some sliders.

9. INVERSE PROBLEM

In air bearing simulation, the balanced steady state flying attitude of the slider correspond-
ing to a fixed prescribed load is more important than the air bearing pressure distribution
of the steady state solution of one fixed attitude, because it is the former that is prescribed
in the design of hard disk drives. The steady state flying attitude is defined as the one at
which the pre-enforced suspension force and pitch and roll torques are balanced by their
counterparts generated by the air bearing that are functions of flying attitude. We can define
a vectorR

¯
= (R1, R2, R3) with

R1 = Fair − Fs, (19)

R2 = (Mair)p + (Ms)p + (Mshear)p, (20)

R3 = (Mair)r + (Ms)r + (Mshear)r , (21)

FIG. 7. The multigrid V cycles.
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where Fair is the resultant air bearing force of a guessed flying attitude,Fs is the ap-
plied suspension force,Mair , Mshear, andMs are moments caused by air bearing pressure,
viscous shear force at the slider air bearing surface at that guessed attitude and the sus-
pension, respectively. Subscriptsp and r represent the projection in the pitch and roll
directions (see Fig. 2). In Fukui and Kaneko’s paper [13], the velocity profile at each mod-
ified inverse Knudsen number is not available, and as a result the shear moments cannot
be evaluated. But for most sliders, the moments caused by viscous shears are very small
compared to those caused by air bearing pressure. For example, as will be shown in the
slider design in Fig. 4, which is free of suspension moments, at the inner radial posi-
tion (15 mm), the viscous shear moments only account for 1.9% and 0.04% of the total
in the pitch and roll directions, respectively. In addition, the difference between the ve-
locity profile predicted by the first-order slip model and the Fukui and Kaneko model is
also small. To simplify the problem, the velocity profile predicted by the first-order slip
model [11] is used to evaluate the moments caused by viscous shear at the slider surface

(Mshear)p = PaLhmZ
∫ b

0

∫ 1

0

(
H

2

∂P

∂X
+ 3x

6(H + 2Kn)

)
d X dY, (22)

(Mshear)r = PaLhmZ
∫ b

0

∫ 1

0

(
H

2

∂P

∂Y
+ 3y

6(H + 2Kn)

)
d X dY, (23)

where Z is the thickness of the slider, andb is the dimesionless length of the slider.
Kn = λ/hm is the Knudsen number withλ being the mean free path of air molecules,
andR

¯
is a nonlinear function of the flying height, the pitch angle and the roll angle. The

object is to find a particular flying attitude that makesR
¯

zero, which corresponds to the
steady state flying attitude. The Quasi–Newton iteration method (Broyden’s method) for
nonlinear problems fully described in Dennis and Schnabel [10] is implemented to find
the steady state flying attitude. Within each Quasi–Newton iteration, the air bearing force
and moments are integrated from the pressure field calculated by the method presented

FIG. 8. The first-level conforming meshes with 717 nodes.
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FIG. 9. The second-level meshes with 4245 nodes.

previously corresponding to the guessed attitude predicted by the Quasi–Newton step, the
viscous shear moments are evaluated using (22) and (23). Our experience shows that gen-
erally only three to four Newton steps are needed to find the balanced steady state attitude,
depending on the initially assumed values.

10. RESULTS AND DISCUSSION

Figures 3 and 4 depict a slider design intended to operate at a flying height of 5–10 nm. The
length and width in the figures have been normalized by the dimensional width (1 mm), and
thex- andy-coordinates in all the figures shown afterwards are dimensionless. Figures 8–10
show the three initial meshes used in the simulation. Figure 11 shows the adaptively refined

FIG. 10. The third-level meshes before mesh adaptation with 12612 nodes.
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FIG. 11. The third-level meshes after mesh adaptation with 18112 nodes.

third-level meshes. From the above figures we see that all the regions with large geometric
changes or pressure gradients have been efficiently captured by the mesh generation and
adaptation techniques. Figure 12 shows the comparison of the convergence histories of the
iterations on a single set of meshes and the multigrid iteration of solving the generalized
Reynolds equation at a guessed attitude. The ‘S’ at the legend end represents the iteration
on a single set of meshes, while the ‘M’ represents multigrid iteration. The convergence
difference among the different schemes is very small, and it is almost undetectable for the
single mesh iteration from the figure. The sudden error jump in the curve corresponds to
mesh adaptation. From the figure it is seen that for the single mesh iteration, the error initially
drops very fast. Only 10 iterations are needed to bring the error down from about 10−2.5

to 10−4. But after the high-frequency error has been smoothed out, the curve flattens. It
takes more than 140 iterations to further reduce the error by about two orders of magnitude.
The multigrid curve shows that all error components can be efficiently removed. The log
error drops almost linearly with the number of iterations (time steps). The figure also shows
that the multigrid technique works well for both schemes on the triangular meshes. For this
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FIG. 12. The convergence comparison between the iteration on a single set of meshes and that of the multigrid
iteration for different schemes.

particular slider, only seven multigrid cycles are needed to get the converged solution. More
than one order of magnitude of simulation time is saved by use of the multigrid technique.

Figures 13 and 14 show the air bearing pressure contours at the steady state attitude
obtained by the PSI and SUPG schemes, respectively. The disk is rotating at 7200 RPM,
and the slider is located at a 15 mm radial position with a−1.22µRadskew angle. The

FIG. 13. The pressure contour calculated by the PSI scheme with 18110 nodes for the finest level meshes.
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FIG. 14. The pressure contour calculated by the SUPG scheme with 18110 nodes for the finest level meshes.

prescribed suspension force is 14.7 mN at the center of the slider, the prescribed suspension
torques are zero. The pressure contours differ only by very small details.

Figure 15 shows the flying height grid convergence history of the final steady state flying
height. The results predicted by the two schemes agree with each other very well. Both
schemes show a trend to converge to an 8-nm flying height. Figures 16 and 17 show the
pitch angle and roll angle grid convergence histories, respectively. For the number of nodes
corresponding to flying height convergence, all schemes reach grid convergence. Figure 18

FIG. 15. The grid convergence of nominal flying height for different schemes.



FIG. 16. The grid convergence of the pitch angle (µRad) for different schemes.

FIG. 17. The grid convergence of the roll angle (µRad) for different schemes.

FIG. 18. The simulation time on a PII 350 PC as a function of number of nodes.

654
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FIG. 19. The flying height at different radial position for the NSIC slider.

shows a plot of the simulation time for finding the steady state attitude as a function of the
grid size.

Figure 19 compares the steady state flying heights of the slider at three radial positions
obtained by the two numerical schemes with experimental measurements using a slider
fabricated from this design. The results predicted by both numerical schemes are quite
close to the experimental data, and the small differences between the numerical simulations
and the experiments are within the error limit of experiments.

11. SUMMARY AND CONCLUSIONS

Two numerical schemes are used to discretize the convection part of the generalized
Reynolds equation on unstructured triangular meshes. One is the PSI scheme, another
one is the SUPG scheme. For the Reynolds equation the unknown is the pressureP, but
to keep the convection equation in conserved form, we takePH as the variable in the
discretization of the convection part. The known spacingH is taken out later to form
the linearized simultaneous equations together with the contribution from the strongly
nonlinear diffusion parts, which are disretized by a linear Galerkin finite element method.
The Reynolds equation is characterized by extremely strong convection effects in hard disk
drives, the bearing number is usually in the order of 103. The geometry of the air bearing
slider changes dramatically in a very narrow wall profile region. The dimension of the slider
is about 1 mm, while the horizontal scale of the wall profile region is about 10µm. Within
this narrow region, the pressure normally changes from several atmospheres at the bearing
surface to ambient or subambient at the fully recessed region. As a result, an extremely
large pressure gradient is built up. To accurately resolve the pressure profile is essential
to obtaining the accurate flying attitude. This requires that the numerical scheme used to
discretize the convection equation introduce as little numerical diffusion error as possible,
otherwise very large amounts of meshes have to be used before the grid converged results
can be obtained.
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In a previous code developed by Lu [19] for the slider design used here, apparent increas-
ing of flying height with the increasing of the mesh number is still observed even when a
385× 385 grid system is used. Lu’s code is based on the hybrid finite volume scheme for
convection and diffusion equation of Patankar [20]. The current approach requires much
fewer meshes to achieve grid convergence; this demonstrates that the PSI or SUPG de-
scretization of the convection equation together with the Galerkin treatment of the diffusion
parts are more accurate in solving the generalized Reynolds equation. The resulting numer-
ical schemes are shown to be unconditionally stable. A non-nested FAS multigrid algorithm
has been successfully employed to speed up the convergence rate of the schemes. The multi-
grid algorithm requires no relationship between different mesh levels, but the relationship
has influence on the covergence speed. Nearly one order of simulation time is saved by
implementing the multigrid algorithm. Even though the current code is based on unstruc-
tured meshes, which costs large amount of time to access data through a complicated data
structure, its convergence speed can compete with Lu’s code [19], which uses a structured
rectangular mesh system and the same multigrid strategy of Brandt [8], even with a similar
mesh number. This demonstrates that Brandt’s FAS multigrid algorithm is very robust and
that Mavriplis and Jameson’s grid transfer operators are well suited for unstructured mesh
systems. The steady state flying attitude is found by a Quasi–Newton iteration method
(Broyden’s method). Although the mesh number required by the slider air bearing prob-
lem both physically and numerically is very large compared with other two-dimensional
problems, the current code requires only about two to three minutes on a PII350 PC (with
a node number of about 18000) to find the acceptable final converged steady state flying
attitude for most sliders used in the industry. The results predicted by the code agree well
with experimental data.
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